Oscillons and quasi-breathers in D+1 dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillons and quasi-breathers in D+1 dimensions

We study oscillons in D+1 space-time dimensions using a spherically symmetric ansatz. From Gaussian initial conditions, these evolve by emitting radiation, approaching “quasi-breathers”, near-periodic solutions to the equations of motion. Using a truncated mode expansion, we numerically determine these quasi-breather solutions in 2 < D < 6 and the energy dependence on the oscillation frequency....

متن کامل

Oscillons in Scalar Field Theories: Applications in Higher Dimensions and Inflation

The basic properties of oscillons – localized, long-lived, time-dependent scalar field configurations – are briefly reviewed, including recent results demonstrating how their existence depends on the dimensionality of spacetime. Their role on the dynamics of phase transitions is discussed, and it is shown that oscillons may greatly accelerate the decay of metastable vacuum states. This mechanis...

متن کامل

Long-lived localized field configurations in small lattices: application to oscillons

Long-lived localized field configurations such as breathers, oscillons, or more complex objects naturally arise in the context of a wide range of nonlinear models in different numbers of spatial dimensions. We present a numerical method, which we call the adiabatic damping method, designed to study such configurations in small lattices. Using three-dimensional oscillons in straight phi(4) model...

متن کامل

Quasi-Monte Carlo: halftoning in high dimensions?

The goal in Quasi-Monte Carlo (QMC) is to improve the accuracy of integrals estimated by the Monte Carlo technique through a suitable specification of the sample point set. Indeed, the errors from N samples typically drop as N−1 with QMC, which is much better than the N−1/2 dependence obtained with Monte Carlo estimates based on random point sets. The heuristic reasoning behind selecting QMC po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2007

ISSN: 1029-8479

DOI: 10.1088/1126-6708/2007/01/030